SATURATED NITROGEN-CONTAINING HETEROCYCLES. 20.* CATALYTIC REDUCTION OF N-HYDROXYETHYLPYRIDINIUM AND -QUINOLINIUM SALTS

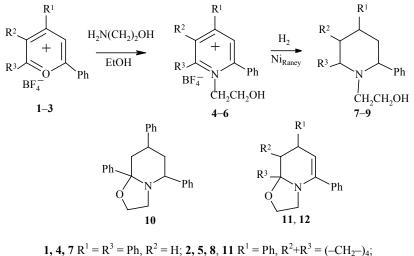
A. G. Golikov, P. V. Reshetov, and A. P. Kriven'ko

Previously unknown N-(2-hydroxyethyl)perhydroquinolines and N-(2-hydroxyethyl)piperidines were synthesized by catalytic reduction of N-(2-hydroxyethyl)tetrahydroquinolinium and N-(2-hydroxyethyl)tetrahydropyridinium tetrafluoroborates. A scheme for the formation of the hydrogenation products is presented.

Keywords: N-(2-hydroxyethyl)perhydroquinolines, N-(2-hydroxyethyl)piperidine, N-(2-hydroxyethyl)-pyridinium, N-(2-hydroxyethyl)quinolinium, tetrafluoroborates, reduction.

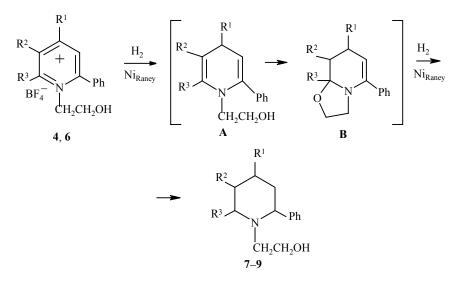
A method that has been studied fairly well for the synthesis of saturated nitrogen-containing heterocycles is the catalytic reductive amination of δ -diketones [2]. However, with noncyclic and semicyclic δ -diketones and ethanolamine the reaction stops at the amination stage with subsequent intramolecular O-cyclization of the intermediate and the formation of perhydrooxazolo[3,2-*a*]pyridines and octahydrooxazolo[3,2-*j*]quinolines [3].

We found that it was possible to synthesize N-(2-hydroxyethyl)-substituted piperidines and perhydroquinolines by catalytic reduction of N-(2-hydroxyethyl)pyridinium salts [4]. In the present work we present new data on the reaction.


High yields of the initial salts, i.e., N-(2-hydroxyethyl)-2,4,6-triphenylpyridinium (4), N-(2-hydroxyethyl)-2,4-diphenyl-5,6,7,8-tetrahydroquinolinium (5), and N-(2-hydroxyethyl)-2-phenyl-4-*p*-methoxyphenyl-5,6,7,8-tetrahydroquinolinium (6) tetrafluoroborates, were obtained by recyclization of the corresponding pyrylium and tetrahydroquinolinium salts by the action of ethanolamine.

The hydrogenation of the pyridinium **4** and quinolinium **5**, **6** salts was conducted in an autoclave in 96% ethanol at 120°C at an initial hydrogen pressure of 10 MPa in the presence of Raney nickel catalyst. Under these conditions selective reduction of the pyridinium cycle occurs, and N-(2-hydroxyethyl)piperidine (7) and -perhydroquinolines **8**, **9** are formed with yields of 60-80%.

The products 7-9 were obtained in the form of the free bases and were colorless oils, isolated by column chromatography on aluminum oxide.

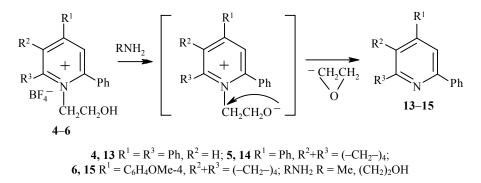

^{*} For Communication 19, see [1].

N. G. Chernyshevsky Saratov State University, Saratov, Russia; e-mail: seller@sgu.ssu.runnet.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1339-1343, October, 2001. Original article submitted November 5, 1999.

4, 7 R² = R³ = Ph, R² = H; **2**, **5**, **8**, **11** R³ = Ph, R²+R³ = (-CH₂-) **3**, **6**, **9**, **12** R¹ = C₆H₄OMe-4, R²+R³ = (-CH₂-)₄

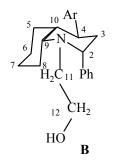
During the hydrogenation of 2,4,6-triphenylpyridinium tetrafluoroborate 4 5,7,8a-triphenylperhydrooxazolo[3,2-*a*]pyridine (10) was isolated from the hydrogenation product with a yield of 30% in addition to the piperidine base 7. Such a reaction path is also retained during hydrogenation of the quinolinium salts 5, 6 with the formation of the O-cyclization products 5,7-diphenyl-4,7,7a,8,9,10,11,11a-octahydrooxazolo[3,2-*j*]quinoline (11) and 7-(4-methoxyphenyl)-5-phenyl-4,7,7a,8,9,10,11,11a-octahydrooxazolo[3,2-*j*]quinoline (12), which were detected by TLC. The compounds 11, 12 used as standards for TLC were obtained by an alternative procedure [4] by ethanolamination of propanonylcyclohexanones in the presence of catalytic amounts of hydrochloric acid.

4, 7 $R^1 = R^3 = Ph$, $R^2 = H$; **5**, **8** $R^1 = Ph$, $R^2 + R^3 = (-CH_2-)_4$; **6**, **9** $R^1 = C_6H_4OMe-4$, $R^2 + R^3 = (-CH_2-)_4$


The formation of the products 10, 11, 12 makes it possible to suppose that the pyridinium ring is reduced through the intermediates A containing a 1,4-dihydropyridine fragment followed by intramolecular O-cyclization and the formation of the oxazolohydropyridines **B**, the reduction of which leads to the bases 7-9.

The proposed scheme is supported by the formation of the N- β -hydroxyethylperhydroquinolines **8**, **9** during the hydrogenation of the oxazolohydroquinolines **11**, **12** (120°C, 10 MPa), identical with those obtained during the catalytic reduction of the tetrahydroquinolinium salts **5**, **6**:

8, 11 Ar = Ph; 9, 12 Ar = C_6H_4OMe-4


During the hydrogenation of the salts **4-6** in the presence of bases (methylamine, ethanolamine) the hydroxyethyl substituent is eliminated with the formation of 2,4,6-triphenylpyridine (**13**), 2,4-diphenyl-5,6,7,8-tetrahydroquinoline (**14**), and 4-*p*-methoxyphenyl-2-phenyl-5,6,7,8-tetrahydroquinoline (**15**) respectively, which are not reduced under the selected conditions. Such a result can be explained in the light of data in [6] by deprotonation of the hydroxyl group under the action of the amine followed by elimination of ethylene oxide.

In the IR spectra of the tetrahydroquinolinium salts **5**, **6** there are strong absorption bands in the regions of 3524 cm⁻¹ corresponding to the stretching vibrations of the O–H bond and 1060 cm⁻¹, characterizing the BF₄⁻¹ anion; the pyridinium ring absorbs at 1560 cm⁻¹. The ¹H NMR spectra of the salts **5**, **6** contain signals for the protons of the hydroxyl group at 2.2 ppm and of the methylene groups N⁺–CH₂ at 4.75 and CH₂OH at 3.75 ppm.

In the ¹³C NMR spectra of the perhydroquinolines **8**, **9** the signal of the C₍₆₎ atom is in the upfield region (19.50 and 19.57 ppm respectively) on account of γ -gauche interaction with the axially oriented C₍₄₎–C₍₁₀₎ bond, indicating *cis*-fusion of the heterocycles and alicycles.

The significant upfield shift of the signals for the $C_{(2)}$, $C_{(4)}$, and $C_{(9)}$ atoms in comparison with those in the spectrum of N-methyl-2,4-diphenylperhydroquinoline [6], caused by interaction with the axially arranged substituents at the $C_{(2)}$ and $C_{(9)}$ positions, indicates that compounds **8**, **9** are fixed in conformation **B**.

Thus, the hydrogenation of N-(2-hydroxyethyl)-substituted pyridinium and quinolinium salts is a prospective method for the synthesis of N-(2-hydroxyethyl)piperidines and perhydroquinolines. It makes possible to synthesize compounds inaccessible during the hydroethanolamination of 1,5-diketones.

EXPERIMENTAL

The ¹H and ¹³C NMR were recorded on a Varian FT-80 instrument at 80 and 20 MHz for ¹H and ¹³C respectively (deuterochloroform, internal standard TMS). The IR spectra were recorded on a Specord M-80 instrument (in vaseline oil and in tablets with potassium bromide). Thin-layer chromatography was conducted on Silufol UV-254 plates (1:3:1 ether–hexane–acetone).

N-(2-Hydroxyethyl)-2,4,6-triphenylpyridinium Tetrafluoroborate (4). The compound was obtained by the method described in [6].

N-(2-Hydroxyethyl)-2,4-diphenyl-5,6,7,8-tetrahydroquinolinium Tetrafluoroborate (5). To a solution of 2,4-diphenyl-5,6,7,8-tetrahydrochromylium tetrafluoroborate (2) (12 mmol) in ethanol (30 ml) we added dropwise with constant stirring ethanolamine (14 mmol). The mixture was kept at room temperature for 3 h, and diethyl ether (150 ml) was added. The crystals that separated were filtered off and recrystallized from ethanol. The yield was 75%, and the product formed colorless crystals melting at 129-131°C (ethanol). IR spectrum, cm⁻¹: 3524 (O–H); 3028, 3064 (vCH of aromatic ring); 2944, 2876 (CH₂); 1552 (vibrations of pyridinium ring); 1072 (BF₄⁻); 764, 700 (δ CH of aromatic ring). ¹H NMR spectrum, δ , ppm, *J* (Hz): 2.2 (1H, s, OH); 3.75 (2H, t, *J* = 3.9, CH₂OH); 4.73 (2H, t, *J* = 3.9, N⁺-CH₂CH₂OH); 3.42 (2H, t, *J* = 6.1, CH₂C=N⁺); 2.80 (2H, t, *J* = 6.3, 5-CH₂); 2.10-1.80 (4H, m, 6-CH₂, 7-CH₂); 7.40-7.53 (10H, m, H_{Ph}). Found, %: C 65.21; H 6.26; N 3.54. C₂₃H₂₄BF₄NO. Calculated, %: C 66.19; H 5.75; N 3.35.

N-(2-Hydroxyethyl)-4-*p*-methoxyphenyl-2-phenyl-5,6,7,8-tetrahydroquinolinium Tetrafluoroborate (6). This compound was synthesized by analogy with the salt **5** starting from 4-*p*-methoxyphenyl-2-phenyl-5,6,7,8-tetrahydrochromylium tetrafluoroborate (3). The yield was 72%, and the product formed colorless crystals melting at 105-106°C (ethanol). IR spectrum, cm⁻¹: 3526 (OH); 2942, 2876 (CH₂); 3024; 3060 (vCH of aromatic ring); 1552 (vibrations of pyridinium ring); 1070 (BF₄⁻); 764, 700 (&CH of aromatic ring). ¹H NMR spectrum, δ , ppm, *J* (Hz): 2.22 (1H, s, OH); 3.75 (2H, t, *J* = 3.8, CH₂OH); 4.72 (2H, t, N⁺-CH₂CH₂OH); 3.40 (2H, t, CH₂-C=N⁺); 2.85 (2H, t, 5-CH₂); 2.04-1.72 (4H, m, 6-CH₂, 7-CH₂); 7.40-7.58 (10H, m, H_{Ph}); 3.84 (3H, s, OCH₃). Found, %: C 64.03; H 5.52; N 3.34. C₂₄H₂₆BF₄NO₂. Calculated, %: C 64.43; H 5.82; N 3.13.

N-(2-Hydroxyethyl)-2,4,6-triphenylpiperidine (7) and 5,7,8a-Triphenylperhydrooxazolo-[3,2*a*]pyridine (10). In an autoclave with a capacity of 150 ml we placed ethanol (70 ml), the salt 4 (12 mmol), and Raney nickel catalyst (10% of the mass of the initial salt, initial hydrogen pressure 1-MPa, 120°C). After the absorption of 36 mmol of hydrogen the hydrogenation product was filtered from the catalyst and treated with a 5% solution of sodium hydroxide to pH 8-9, and the obtained base was extracted with 50-ml portions of ether. Compounds 7 and 10 were separated on a column (diameter 20 mm, length 250 mm) filled with aluminum oxide of III activity (3:1 hexane–diethyl ether). The constants and spectral characteristics of compounds 7 and 10 were given in [4].

N-(2-Hydroxyethyl)-2,4-diphenylperhydroquinoline (8). This compound was obtained by analogy with compound 7 from the tetrahydroquinolinium salt **5** [4].

N-(2-Hydroxyethyl)-4-*p***-methoxyphenyl-2-phenylperhydroquinoline (9).** This compound was obtained by analogy with compound **7** from the tetrahydroquinolinium salt **6**. The yield was 75%, and the product was a colorless oil; R_f 0.295. ¹³C NMR spectrum, δ, ppm: C₍₂₎ 53.26; C₍₃₎ 33.80; C₍₄₎ 35.96; C₍₅₎ 28.72; C₍₆₎ 19.57; C₍₇₎ 26.09; C₍₈₎ 24.82; C₍₉₎ 46.98; C₍₁₀₎ 46.30; C₍₁₁₎ 48.46; C₍₁₂₎ 61.05; O–CH₃ 54.89. ¹H NMR spectrum, δ, ppm, *J* (Hz): 2.87 (1H, s, OH); 3.42 (2H, t, N–CH₂CH₂OH); 2.64 (2H, t, N–CH₂CH₂OH); 3.76 (3H, s, O–CH₃); 6.73-7.36 (9H, m, H_{Ph}). Found, %: C 78.64; H 8.15; N 4.05. C₂₄H₃₁NO₂. Calculated, %: C 78.90; H 8.49; N 3.84.

Oxazolohydroquinolines 11 and 12 were obtained by the method described in [5].

N-(2-Hydroxyethyl)-2,4-diphenylperhydroquinoline (8). In an autoclave with a capacity of 150 ml we placed ethanol (70 ml), the oxazolohydroquinoline **11** (15 mmol), 40% HBF₄ (15 mmol, 3.3 ml), and Raney nickel catalyst (10% of the mass of the initial compound, initial hydrogen pressure 10 MPa, 120°C). When 15 mmol of hydrogen had been absorbed the hydrogenation product was filtered from the catalyst and treated with 5% sodium hydroxide solution to pH 8-9. The nitrogen base **8** was obtained with a yield of 82%.

N-(2-Hydroxyethyl)-4-*p*-methoxyphenyl-2-phenylperhydroquinoline **9** was obtained similarly from the oxazolohydroquinoline **12** with a yield of 80%.

REFERENCES

- 1. R. V. Seller, P. V. Reshetov, T. S. Seller, and A. P. Kriven'ko, *Khim. Geterotsikl. Soedin.*, 1108 (2000).
- 2. A. P. Kriven'ko (Editor), *Chemistry of Five- and Six-Membered N- and O-Containing Heterocycles* [in Russian], Saratov (1997), p.268.
- 3. T. G. Nikolaeva, P. V. Reshetov, A. P. Kriven'ko, and V. G. Kharchenko, *Khim. Geterotsikl. Soedin.*, 1370 (1983).
- 4. A. G. Golikov, P. V. Reshetov, and A. P. Kriven'ko, *Khim. Geterotsikl. Soedin.*, 851 (1997).
- 5. L. M. Eremeeva, T. V. Moskovkina, Yu. V. Vasilenko, A. N. Saverchenko, V. A. Kaminskii, and M. N. Tilichenko, *Khim. Geterotsikl. Soedin.*, 240 (1979).
- 6. A. R. Katritzky and J. B. Bapat, J. Chem. Res. (M), 4783 (1978).
- 7. P. V. Reshetov, S. A. Rozhnova, and A. P. Kriven'ko, *Khim. Geterotsikl. Soedin.*, 68 (1994).